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Abstract—Vehicle tracking using airborne wide-area motion
imagery (WAMI) for monitoring urban environments is very
challenging for current state-of-the-art tracking algorithms, com-
pared to object tracking in full motion video (FMV). Character-
istics that constrain performance in WAMI to relatively short
tracks range from the limitations of the camera sensor array
including low frame rate and georegistration inaccuracies, to
small target support size, presence of numerous shadows and
occlusions from buildings, continuously changing vantage point
of the platform, presence of distractors and clutter among other
confounding factors. We describe our Likelihood of Features
Tracking (LoFT) system that is based on fusing multiple sources
of information about the target and its environment akin to
a track-before-detect approach. LoFT uses image-based feature
likelihood maps derived from a template-based target model,
object and motion saliency, track prediction and management,
combined with a novel adaptive appearance target update model.
Quantitative measures of performance are presented using a set
of manually marked objects in both WAMI, namely Columbus
Large Image Format (CLIF), and several standard FMV se-
quences. Comparison with a number of single object tracking
systems shows that LoFT outperforms other visual trackers,
including state-of-the-art sparse representation and learning
based methods, by a significant amount on the CLIF sequences
and is competitive on FMV sequences.

I. INTRODUCTION

Target tracking remains a challenging problem in computer
vision [1] due to target-environment appearance variabili-
ties, significant illumination changes and partial occlusions.
Tracking in aerial imagery is generally harder than tradi-
tional tracking due to the problems associated with a moving
platform including gimbal-based stabilization errors, relative
motion where sensor and target are both moving, seams in
mosaics where stitching is inaccurate, georegistration errors,
and drift in the intrinsic and extrinsic camera parameters at
high altitudes [2]. Tracking in Wide-Area Motion Imagery
(WAMI) poses a number of additional difficulties for vision-
based tracking algorithms due to very large gigapixel sized
images, low frame rate sampling, low resolution targets, lim-
ited target contrast, foreground distractors, background clutter,
shadows, static and dynamic parallax occlusions, platform
motion, registration, mosacing across multiple cameras, object
dynamics, etc. [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13]. These difficulties make the tracking task in WAMI

more challenging compared to standard ground-based or even
narrow field-of-view (aerial) full motion video (FMV).

Traditional visual trackers either use motion/change detec-
tion or template matching. Persistent tracking using motion
detection-based schemes need to accommodate dynamic be-
haviors where initially moving objects can become station-
ary for short or extended time periods, then start to move
again. Motion-based methods face difficulties with registra-
tion, scenes with dense set of objects or near-stationary targets.
Accuracy of background subtraction and track association
dictate the success of these tracking methods [10], [9], [14],
[15]. Template trackers on the other hand, can drift off target
and attach themselves to objects that seem similar, without an
update to the appearance model [16], [2].

Visual tracking is an active research area with a recent
focus on appearance adaptation, learning and sparse repre-
sentation. Appearance models are used in [17], [18], [19],
[20], classification and learning techniques have been studied
in [21], [22], and parts-based deformable templates in [23].
Gu et al. [20] stress low computation cost in addition to ro-
bustness and propose a simple yet powerful Nearest Neighbor
(NN) method for real-time tracking. Online multiple instance
learning (MILTrack) is used to achieve robustness to image
distortions and occlusions [21]. The P-N tracker [22] uses
bootstrapping binary classifiers and shows higher reliability
by generating longer tracks. Mei et al. [24], [25] propose a
robust tracking method using a sparse representation approach
within a particle filter framework to account for pose changes.

We have developed the Likelihood of Features Tracking
(LoFT) system to track objects in WAMI. The overall LoFT
tracking system shown in Figure 1, can be broadly organized
into several categories including: (i) Target modeling, (ii)
Likelihood fusion, and (iii) Track management. Given a target
of interest, it is modeled using a rich feature set including
intensity/color, edge, shape and texture information [4], [26].
The novelty of the overall LoFT system stems from a combina-
tion of critical components including a flexible set of features
to model the target, an explicit appearance update scheme,
adaptive posterior likelihood fusion for track-before-detect,
a kinematic motion model, and track termination working
cooperatively in balance to produce a reliable tracking system.
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models such as [30], [21] all have online and offline versions
to robustly adapt to object appearance variability. Recently,
several trackers based on sparse representation have shown
promise in handling complex appearance changes [25], [31],
[32]. Our dynamic appearance adaptation scheme maintains
and updates a single template by estimating affine changes in
the target to handle orientation and scale changes [33], using
multiscale Laplacian of Gaussian edge detection followed
by segmentation to largely correct for drift. Multi-template
extensions of the proposed approach are straightforward but
computationally more expensive. LoFT is being extended in
this direction by parallelization of the integral histogram [34].

A. Appearance Update

Given a target object template, Ts, in the initial starting
image frame, Is, we want to identify the location of the
template in each frame of the WAMI sequence using a likeli-
hood matching function, M(·). Once the presence or absence
of the target has been determined, we then need to decide
whether or not to update the template. The target template
needs to be updated at appropriate time points during tracking,
without drifting off the target, using an update schedule which
is a tradeoff between plasticity (fast template updates) and
stability (slow template updates). The template search and
update model can be represented as,

x∗k+1 = argmax
x∈NW

M(I(k+1,c∈NT )(x+ c), Tu), k ≥ s, u ≥ s

(2)

Tk+1 =

 I(k+1,
c∈NT )

(x∗k+1 + c), if f(x∗k+1, Ik+1, Tu)) > Th

Tu, otherwise

where M(·) denotes the posterior likelihood estimation oper-
ator that compares the vehicle/car template from time step u,
Tu (with support region or image chip, c ∈ NT ), within the
image search window region, NW , at time step k + 1. The
optimal target location in Ik+1 is given by x∗k+1. If the car
appearance is stable with respect to the last updated template,
Tu, then no template update for, Tk+1, is performed. However,
if the appearance change function, f(·), is above a threshold
indicating that the object appearance is changing and we are
confident that this change is not due to an occlusion or shadow,
then the template is updated to the image block centered at
x∗k+1. Instead of maintaining and updating a single template
model of the target a collection of templates can be kept (as in
learning-based methods) using the same framework, in which
case we would search for the best match among all templates
in Eq. 2. Note that if u = s then the object template is never
updated and remains identical to the initialized target model;
u = k naively updates on every frame. Our adaptive update
function f(·) considers a variety of factors such as orientation,
illumination, scale change and update method.

In most video object tracking scenarios the no update
scheme rarely leads to better performance [17] whereas naively
updating on every frame will quickly cause the tracker to drift
especially in complex video such as WAMI [4]; making the

Fig. 2. Orientation and intensity appearance changes of the same vehicle
over a short period of time necessitates updates to the target template at an
appropriate schedule balancing plasticity and stability.

tradeoff between these two extremes is commonly referred
to as the stability-plasticity dilemma [35]. Figure 2 shows
several frames of a sample car from the CLIF sequences as its
appearance changes over time. Our approach to this dilemma
is to explicitly model appearance variation by estimating
scale and orientation changes in the target that is robust
to illumination variation. Segmentation can further improve
performance [36], [37].

We recover the affine transformation matrix to model the
appearance update by first extracting a reliable contour of the
object to be tracked using a multiscale Laplacian of Gaussian,
followed by estimating the updated pose of the object using
the Radon transform projections as described below.

B. Laplacian of Gaussian

We use a multi-scale Laplacian of Gaussian (LoG) filter to
increase the response of the edge pixels. Using a series of con-
volutions with scale-normalized LoG kernels σ2∇2G(x, y, σ2)
where σ denotes the standard deviation of the Gaussian filter,

Ik,L(x, y, σ
2) = Ik(x, y) ∗ σ2∇2G(x, y, σ2) (3)

we estimate the object scale at time k by estimating the mean
of the local maxima responses in the LoG within the vehicle
template region NT . If this σ̂∗k has changed from σ̂∗u then the
object scale is updated.

C. Orientation estimation

The Radon transform is used to estimate the orientation of
the object [33] and applying the transform on the LoG image
Ik,L(x, y), we can denote the line integrals as:

Rk(ρ, θ) =

∫∫
Ik,L(x, y)δ(ρ− x cos θ − y sin θ) dx dy (4)

where δ(·) is the Dirac delta function that samples the image
along a ray (ρ, θ). Given the image projection at angle θ, we
estimate the variance of each projection profile and search for
the maximum in the projection variances by using a second-
order derivative operator to achieve robustness to illumination
change [38]. An example of vehicle orientation and change
in orientation estimation is shown in Figure 3. This appear-
ance update procedure seems to provide a balance between
plasticity and stability that works well for vehicles in aerial
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Fig. 3. Vehicle orientations are measured wrt vertical axis pointed up. (a)
Car template. (b) Variance of Radon transform profiles with maximum at 90◦
(red sq). (c) Car template rotated by 45◦ CCW. (d) Peak in variance of Radon
transform profiles at 135◦ (red sq), for correct change in orientation of 45◦.

imagery. More detailed performance evaluation of orientation
estimation is found in our related work [39].

IV. TRACK MANAGEMENT

A robust tracker should maintain track history informa-
tion and terminate the tracker as performance deteriorates
irrecoverably (e.g. camera seam boundary), the target leaves
the field-of-view (e.g. target exiting the scene), enters a long
occluded/shadow region, or the tracker has lost the target.
LoFT incorporates multiple track termination conditions to
ensure high precision (track purity) and enable downstream
tracklet stitching algorithms to operate efficiently during track
stitching. Track linearity or smoothness guides the tracker to
select more plausible target locations incorporating vehicle
motion dynamics and a module for terminating the tracker.

A. Smooth Trajectory Dynamics Assumption

Peaks in the fused likelihood map are often many due to
clutter and denote possible target locations including distrac-
tors. However, only a small subset of these will satisfy the
smooth motion assumption (i. e. linear motion). Checks for
smooth motion/linearity is enforced before a candidate target
location is selected to eliminate improbable locations. Figure 4
illustrates the linear motion constraint. The red point indicates
a candidate object with a very similar appearance to the target
being tracked, but this location is improbable since it does not
satisfy the trajectory motion dynamics check and so the next
highest peak is selected (yellow dot). This condition enforces
smoothness of the trajectory thus eliminating erratic jumps and
does not affect turning cars.

Fig. 4. When the maximum peak (red dot) deviates from the smooth
trajectory assumption (in this case linearity) LoFT ignores the distractor to
select a less dominant peak satisfying the linearity constraint (yellow dot).

B. Prediction & Filtering Dynamical Model

LoFT can use multiple types of filters for motion prediction.
In the implementation evaluation for this paper we used a
Kalman filter for smoothing and prediction [40], [41] to

determine the search window in the next frame, Ik+1. The
Kalman filter is a recursive filter that estimates the state,
xk, of a linear dynamical system from a series of noisy
measurements, zk. At each time step k the state transition
model is applied to the state to generate the new state,

xk+1 = Fk xk + vk (5)
assuming a linear additive Gaussian process noise model.
The measurement equation under uncertainty generates the
observed outputs from the true (”hidden”) state.

zk = Hk xk +wk (6)
where vk denotes process noise (Gaussian with zero-mean
and covariance Qk), wk denotes measurement noise (Gaussian
with zero-mean and covariance Rk). The system plant is
modeled by known linear systems, where Fk is the state-
transition matrix and Hk is the observation model.

Possible target locations within the search window are
denoted by peak locations in the fused posterior vehicle
likelihood map. Candidate locations are then filtered by in-
corporating the prediction information. Given a case where
feature fusion indicates low probability of the target location
(due to occlusions, image distortions, inadequacy of features to
localize the object, etc.) the filtering-based predicted position
is then reported as the target location. Figure 5 shows LoFT
with the appearance-based update module being active over
the track segments in yellow with informative search windows,
whereas in the shadow region the appearance-based features
become unreliable and LoFT switches to using only filtering-
based prediction mode (track segments in white).

Fig. 5. Adaptation to changing environmental situations. LoFT switches
between using fused feature- and filterin-based target localization (yellow
boxes) within informative search windows (yellow boxes) and predominantly
filtering based localization in uninformative search windows (white boxes).

C. Target vs Environment Contrast

LoFT measures the dissimilarity between the target and its
surrounding environment in order to assess the presence of
occlusion events. If the VR between the target and its envi-
ronment is below a threshold, this indicates a high probability
that the tracker/target is within an occluded region. In such
situations, LoFT relies more heavily on the dynamical filter
predictions. Figure 6 shows a sample frame which illustrates
the difference between high and low VR locations.

D. Image/Camera Boundary Check

LoFT determines if the target is leaving the scene, crossing
a seam or entering an image boundary region on every
iteration in order to test for the disappearance of targets. If the
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Fig. 6. Pixels within the red rectangle form the foreground (Fg) distribution,
pixels between the red and blue rectangles form the background (Bg) distri-
bution. Left: High VR when Fg and Bg regions have different distributions.
Right: Low VR when Fg and Bg regions have similar distributions.

Fig. 7. Termination of tracks for targets leaving the working image boundary.

predicted location is out of the working boundary, the tracker
automatically terminates to avoid data access issues (Figure 7).

V. EXPERIMENTAL RESULTS

A. Datasets Used

LoFT was evaluated using the Columbus Large Image
Format (CLIF) [42] WAMI dataset which has a number of
challenging conditions such as shadows, occlusions, turning
vehicles, low contrast and fast vehicle motion. We used the
same vehicles selected in [11] which have a total of 455
ground-truth locations of which more than 22% are occluded
locations. The short track lengths combined with a high degree
of occlusions makes the tracking task especially challenging.
Several examples of the difficulties in vehicle tracking in
CLIF are illustrated in Figure 8. Figure 9 shows that half
the sequences in this sample set of tracks have a significant
amount of occluded regions and Table I summarizes the
challenges in each sequence. We used several FMV sequences
which have been used to benchmark a number of published
tracking algorithms in the literature. These sequences include:
’girl’, ’david’, ’faceocc’, ’faceocc2’ [20] and allow comparison
of LoFT against a number of existing tracker results for which
source code may not be available.

B. Registration and Ground-Truth for CLIF WAMI

In our tests we used the same homographies as in [11] that
were estimated using SIFT (Scale Invariant Feature Transform)
[43] with RANSAC to map each frame in a sequence to
the first base frame. Several other approaches have been
used to register CLIF imagery including Lucas-Kanade, and
correlation-based [44], or can be adapted for WAMI [45],
[46]. Using these homographies we registered consecutive
frames to the first frame in each sequence. The homographies
when applied to the ground-truth bounding boxes can produce
inaccurate quadrilaterals since these transformations are on
a global frame level. All quadrilaterals were automatically
replaced with axis aligned boxes and visually inspected to
manually replace any incorrect bounding boxes, on registered

frames, with accurate axis aligned boxes using KOLAM [5],
[6], [47] or MIT Layer Annotation Tool [48].

Fig. 8. Example of challenging conditions: Target appearance changes during
turning (C4-1-0), low contrast and shadows (C3-3-4), shadow occlusion (C0-
3-0) and combined building and shadow occlusion (C2-4-1) [49].

Fig. 9. Distribution of occluded frames in the 14 CLIF seq. Black: fully
occluded, Gray: partially occluded. Target is occluded in 22.4% of the frames.

Track Target
Seq. No Challenges Length Size [pixel] Occ.Fr
C0 3 0 Occlusion 50 17x25 17
C1 2 0 Occlusion 27 21x15 2
C1 4 0 Occlusion 50 21x17 21
C1 4 6 Occlusion 50 25x25 15
C2 4 1 Occlusion 50 25x17 32
C3 3 4 Occlusion 27 27x17 12
C4 1 0 Turning car 18 15x25 -
C4 3 0 Occlusion 20 21x17 3
C4 4 1 Low contrast 30 17x21 -
C4 4 4 - 13 17x25 -
C5 1 4 Fast target motion 23 27x11 -
C5 2 0 Fast target motion 49 21x15 -
C5 3 7 - 27 27x47 -
C5 4 1 Low Contrast 21 27x19 -

Total 455 102

TABLE I
CHARACTERISTICS OF THE 14 CLIF SEQUENCES SUMMARIZED FROM

[11] SHOWING TRACK LENGTH, VEHICLE TARGET SIZE AND NUMBER OF
OCCLUDED FRAMES. IMAGE FRAMES ARE 2008 × 1336 PIXELS.

C. Quantitative Comparison
We used several retrieval or detection-based performance

metrics to evaluate the trackers. The first one is the Missing
Frame Rate (MFR), which is the percentage of number of
missing frames to the total number of ground-truth frames,

MFR =
# missing frames

# total GT frames
(7)
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